# Full list of all the articles published in Volumes 1-29 of Chemistry Review, arranged by feature ## 100 years ago | Title | Vol. | Issue | |---------------------------------------------|------|-------| | Robert Wilhelm Bunsen (1811-1899) | 8 | 3 | | Edward Frankland (1825-1899) | 9 | 2 | | Henry Moseley: understanding atomic numbers | 23 | 1 | | Niels Bohr and atomic structure | 23 | 2 | #### 200 years ago | Title | Vol. | Issue | |--------------------------|------|-------| | Joseph Black (1728-1799) | 9 | 1 | ## **Answer back** | Title | Exam Board | Vol. | Issue | |---------------------------------------------------|-------------------------------------------------|------|-------| | The main features of the atomic spectrum of | JMB | 1 | 1 | | hydrogen | | | | | A question of organic reactions | JMB | 1 | 2 | | Chemistry from group V | University of London Schools | 1 | 3 | | | Examinations 1989 | | | | A question of ideality | JMB | 1 | 4 | | Rates and orders of reaction | Oxford and Cambridge | 1 | 5 | | | Examinations Board | | | | Acids and equilibria | JMB | 2 | 1 | | Testing and estimating ions | JMB | 2 | 2 | | Alternative fuels | Salters' Advanced Chemistry | 2 | 3 | | Have you got redox potential | JMB | 2 | 4 | | A question of applying knowledge | Salters' Advanced Chemistry | 2 | 5 | | Silicone polymers | University of London | 3 | 1 | | | Examinations and Assessment | | | | | Council, 1992 Nuffield A-level | | | | | examination | | | | Distinguishing between pairs of organic compounds | JMB Syllabus B paper 2, Section B, 1990 | 3 | 2 | | The Chemistry of Life | Nuffield Chemistry Special Study<br>1989 | 3 | 3 | | Social Economic, Environmental and Technological | Oxford & Cambridge, Paper 3 | 3 | 4 | | aspects of Chemistry | 1992 | | | | Born-Haber cycle and lattice energies | Nuffield Paper 2, ULEAC 1988 | 3 | 5 | | A Balancing Act | JMB 1991, paper IIB | 4 | 1 | | Petroleum technology | Salters' Advanced Level | 4 | 2 | | | Chemistry | | | | The importance of revision | Salters' Paper 1, 1992 | 4 | 3 | | Directing aromatic substitution | JMB Syllabus A and Syllabus B<br>1991 | 4 | 4 | | Mr Midgeley's discovery CFCs | Salters A level examinations 1994 | 4 | 5 | | Tackling calculations | Nuffield Chemistry 1993, Paper 1 | 5 | 1 | | The mystery of the dead deer | Salters A-level 1994 | 5 | 2 | | Ammonia | Oxford and Cambridge Paper 3,<br>Section A 1992 | 5 | 3 | | Transition Metals | NEAB Paper B Section IIA, 1995 | 5 | 4 | | An Unusual Beetle | Salter A level Paper 1 1995 | 5 | 5 | | Reactions of Halogenoalkanes with Potassium | NEAB | 6 | 1 | | Hydroxide | | | | | A Potentially Dangerous Fertiliser | Salters (OCR) | 6 | 2 | | Knocking Your Organic Chemistry into Shape | Oxford & Cambridge | 6 | 3 | | An Organic Whodunit | WJEC | 6 | 4 | | Copper Chemistry | Salters (OCR) | 6 | 5 | | Structures Equations & Mechanisms | NEAB | 7 | 1 | | Kinetics | NEAB | 7 | 2 | | Planning Your Chemistry | Nuffield | 7 | 3 | | Periodic Pattern | NEAB | 7 | 4 | | Chromatography & Structure of Dipeptide | Nuffield | 7 | 5 | |-------------------------------------------|--------------------|----|---| | Complex Information | OCSEB | 8 | 1 | | Does faster mean further? | WJEC | 8 | 2 | | Organic Chemistry | NEAB | 8 | 3 | | Energy, bonding and haloalkanes | Nuffield | 8 | 4 | | Obtaining Marks from obtaining Methods | NEAB | 8 | 5 | | Ethanol as a Fuel | Salters (OCR) | 9 | 1 | | Solving a chemical jigsaw puzzle | NEAB | 9 | 2 | | Structure and bonding | NEAB | 9 | 3 | | Phosphorus and friends | EdExcel | 9 | 4 | | Testing Halide Ions | AEB | 9 | 5 | | Testing much more than fertilizers | EdExcel | 10 | 1 | | Knowledge and how to apply it | NEAB | 10 | 2 | | Assorted Alcohols | AQA | 10 | 3 | | Correcting Fluid correct? | NEAB | 10 | 4 | | Redox rights and wrongs | Edexcel | 11 | 1 | | Sniffing for extra marks | WJEB | 11 | 2 | | Patterns in the periodic table | Scottish Higher | 11 | 3 | | Oxidation and reduction at AS and A2 | AQA | 11 | 4 | | Electronic Structure and Chemical Bonding | Edexcel | 12 | 1 | | Familiar and less familiar acids | WJEC | 12 | 2 | | Fuelling the Fire | OCR | 12 | 3 | | Particles, bonding and shapes | AQA | 12 | 4 | | Get in the Right Group | OCR | 13 | 1 | | Organic Synthesis | AQA | 13 | 2 | | Synoptic Papers and Synoptic Questions | Edexcel | 13 | 3 | | Longer Responses | AQA | 13 | 4 | | Halons and the demise of the ozone | OCR | 14 | 1 | | Tales of the Unexpected June 2003 | WJEC | 14 | 2 | | Acids, bases, pH and buffers | AQA | 14 | 3 | | Any Old Ion? | Salters (OCR) – A2 | 14 | 4 | | Equilibrium, Enthalpy, Entropy and Extras | Salters (OCR) – A2 | 15 | 1 | | Photochemical smog | Salters - Advanced | 15 | 2 | | Keep in Contact | Edexcel - AS | 15 | 3 | | Why do endothermic reactions happen? | AQA - A2 | 15 | 4 | | Driven by Enthalpy | Edexcel - AS | 16 | 1 | | Ironing out the problem | Edexcel - A2 | 16 | 2 | | A synoptic organic question | AQA - A2 | 16 | 3 | | Extracting chemistry with a metal | Salters (OCR) - AS | 16 | 4 | | A weighty problem? | Salters (OCR) - A2 | 17 | 1 | | Genning up on nitrogen | AQA | 17 | 2 | | Changing gear to AS | Salters (OCR) - AS | 17 | 3 | | Glorious glycerol | Salters (OCR) - A2 | 17 | 4 | | Getting into shape with isomers | AQA - AS | 18 | 1 | | Communicating chemistry | Salters (OCR) - AS | 18 | 2 | | Watch your language | AQA | 18 | 3 | | Sulfuric acid | Edexcel | 18 | 4 | | Vitamin C | Salters (OCR) – A2 | 19 | 1 | | Chemistry and fireworks | Salters (OCR) – AS | 19 | 3 | | Rates and catalysis | AQA | 19 | 4 | | Fun with phenylethene | Salters (OCR) – AS | 20 | 1 | |---------------------------------------------------|-------------------------|----|---| | Calculations | Salters (OCR) – AS & A2 | 20 | 2 | | What comes out of your kettle? | AQA | 20 | 4 | | It ain't what you do (it's the way you do it) | AQA | 21 | 1 | | Structure and spectroscopy | Salters (OCR) – A2 | 21 | 2 | | Folic acid | Salters (OCR) – A2 | 21 | 3 | | Controversial chlorine | Salters (OCR) – AS | 22 | 1 | | Chemistry from a natural product | Salters (OCR) – AS | 22 | 2 | | Tricky transition metals | IB – Higher level | 22 | 3 | | Planning for success in extended-answer questions | Salters (OCR) - AS | 23 | 1 | | Absinthe: Lessons from the green fairy | Salters (OCR) – AS | 23 | 3 | | Alkenes and clean screens | Salters (OCR) – AS | 24 | 1 | | Examining equilibrium | Salters (OCR) – A2 | 24 | 3 | | Indications of change | IB – Higher level | 24 | 4 | | All hail the halogens | AQA | 25 | 3 | | A complex way to find nickel compounds | Salters (OCR) – A2 | 25 | 4 | | Focus on the basics | Salters (OCR) – A2 | 26 | 1 | | Wrack your brains | Salters (OCR) – AS | 26 | 2 | | Not-so stainless steel | Salters (OCR) – A2 | 26 | 3 | | Concentrate for first-rate answers | AQA | 26 | 4 | | Acids, alkalis and pH | AQA | 27 | 1 | | Acetals and hemiacetals | AQA | 27 | 3 | | Polymers and azo dyes | OCR – A2 | 28 | 1 | | Synthesis and analysis | Edexcel | 28 | 2 | | Concentrate on sulfuric acid | AQA | 29 | 1 | # Back page | Crystal gardens 4 1 Horse doping 4 2 Watercycle 4 3 Column chromatography 4 4 Mixing colours 4 5 The flame test 5 1 Growing a crystal tree 5 2 Chemiluminescence 5 3 Pyrrole pigments 5 4 Stained glass 5 5 Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock in roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Dr | Title | Vol. | Issue | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|-------| | Watercycle 4 3 Column chromatography 4 4 4 4 5 Mixing colours 4 5 1 6 5 1 6 1 5 1 1 6 1 5 1 1 6 1 5 1 6 1 7 3 7 1 4 5 3 7 7 4 8 7 3 4 8 3 5 5 3 8 7 4 8 4 8 3 5 5 3 8 4 8 3 4 8 4 8 4 8 4 8 4 8 4 8 4 4 8 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 2 2 4 8 4 <td>Crystal gardens</td> <td>4</td> <td>1</td> | Crystal gardens | 4 | 1 | | Watercycle 4 3 Column chromatography 4 4 4 4 5 Mixing colours 4 5 1 6 5 1 6 1 5 1 1 6 1 5 1 1 6 1 5 1 6 1 7 3 7 1 4 5 3 7 7 4 8 7 3 4 8 3 5 5 3 8 7 4 8 4 8 3 5 5 3 8 4 8 3 4 8 4 8 4 8 4 8 4 8 4 8 4 4 8 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 4 8 4 2 2 4 8 4 <td>, ,</td> <td>4</td> <td>2</td> | , , | 4 | 2 | | Column chromatography 4 4 Mixing colours 4 5 The flame test 5 1 Growing a crystal tree 5 2 Chemiluminescence 5 3 Pyrrole pigments 5 4 Stained glass 5 5 Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 2 Women of achievement 7 3 Black smokers 7 1 Up in smoke 7 2 Women of achievement 7 5 Black smokers 7 4 Something lost in the translation 7 5 The welding toreh 8 1 | <u> </u> | 4 | 3 | | Mixing colours 4 5 The flame test 5 1 Growing a crystal tree 5 2 Chemiluminescence 5 3 Pyrrole pigments 5 4 Stained glass 5 5 Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 | | 4 | 4 | | The flame test 5 1 Growing a crystal tree 5 2 Chemiluminescence 5 3 Pyrrole pigments 5 4 Stained glass 5 5 Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the bay 8 2 The Meissner effect (collagen/gelatin) 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 | | 4 | 5 | | Growing a crystal tree 5 2 Chemiluminescence 5 3 Pyrrole pigments 5 4 Statined glass 5 5 Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Welding torch 8 3 Wobbly chemistry 8 2 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 He Dome 9 3 Gali | | | | | Chemiluminescence 5 3 Pyrrole pigments 5 4 Stained glass 5 5 Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock 'n 'roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in snoke 7 2 Women of achievement 7 3 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 | Growing a crystal tree | | 2 | | Pyrrole pigments 5 4 Stained glass 5 5 Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Neferiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 3 Hydrogen car 9 5 | | | | | Stained glass 5 5 Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 3 Lac 8 5 Egyptian Blue & Neferiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 3 Hydrogen car 9 5 Reaching for the sky 10 1 | | | _ | | Winning crystals 6 1 Salt mining 6 2 The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 | | | | | Salt mining 6 2 The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 3 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 4 A different slant on DNA 10 3 | | | | | The island that time forgot 6 3 Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 </td <td></td> <td></td> <td>_</td> | | | _ | | Rock 'n' roll eggs 6 4 Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 3 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 < | | | | | Virtual reality 6 5 Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 < | · · · · · · · · · · · · · · · · · · · | | | | Oceans of mercury 7 1 Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 | | | | | Up in smoke 7 2 Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 <td>•</td> <td></td> <td></td> | • | | | | Women of achievement 7 3 Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules | <u> </u> | | _ | | Black smokers 7 4 Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 1 | | | | | Something lost in the translation 7 5 The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble | | | _ | | The welding torch 8 1 Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 < | | | | | Drugs in the hay 8 2 The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 <td></td> <td></td> <td></td> | | | | | The Meissner effect (collagen/gelatin) 8 3 Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | | | | Wobbly chemistry 8 4 Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | The Meissner effect (collagen/gelatin) | | | | Lac 8 5 Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | | | | Egyptian Blue & Nefertiti 9 1 Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | | | | Spiders superfibre 9 2 The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | Egyptian Blue & Nefertiti | | _ | | The Dome 9 3 Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | | | | Galileo thermometer 9 4 Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | • • | | | | Hydrogen car 9 5 Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | Galileo thermometer | 9 | 4 | | Reaching for the sky 10 1 Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | | 5 | | Fire-blocking gel 10 2 A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | 10 | 1 | | A different slant on DNA 10 3 A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | | | | A close encounter 10 4 Thread of science 11 1 Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | 10 | 3 | | Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | | | | Glowing fireflies 11 2 Where there's smoke there's gravity 11 3 Displaying vision: LEP 11 4 Beyond the molecules 12 1 Microdiamonds 12 2 Sniffing for trouble 12 3 Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | 11 | 1 | | Where there's smoke there's gravity113Displaying vision: LEP114Beyond the molecules121Microdiamonds122Sniffing for trouble123Airbags124Graphite polyhedral crystals131Life under ice132 | Glowing fireflies | | | | Displaying vision: LEP114Beyond the molecules121Microdiamonds122Sniffing for trouble123Airbags124Graphite polyhedral crystals131Life under ice132 | <u> </u> | 11 | 3 | | Beyond the molecules121Microdiamonds122Sniffing for trouble123Airbags124Graphite polyhedral crystals131Life under ice132 | | 11 | 4 | | Microdiamonds122Sniffing for trouble123Airbags124Graphite polyhedral crystals131Life under ice132 | | | | | Sniffing for trouble123Airbags124Graphite polyhedral crystals131Life under ice132 | | | | | Airbags 12 4 Graphite polyhedral crystals 13 1 Life under ice 13 2 | | | | | Graphite polyhedral crystals131Life under ice132 | | 12 | 4 | | Life under ice 13 2 | <u> </u> | | | | | | | | | Molecules that grow on trees! 13 3 | | | | | Three forms of elemental carbon 13 4 | | | | | Like a diamond in the sky 14 1 | | | _ | | Geothermal energy | 14 | 2 | |--------------------------------------------------|----|---| | Swimming in a nano sea | 14 | 3 | | Brightening the future | 14 | 4 | | The world's smallest test tube | 15 | 1 | | Little Dragon | 15 | 2 | | Iron meteorites on Mars | 15 | 3 | | I'm forever blowing colourful bubbles | 15 | 4 | | DNA origami | 16 | 1 | | A trip to the apothecary's | 16 | 2 | | Sniffer bees | 16 | 3 | | Raindrops on Titan | 16 | 4 | | Dragon's breath | 17 | 1 | | Fireflies: a postcard from Sri Lanka | 17 | 2 | | and then the heav'n espy | 17 | 3 | | Wonderful woad and incredible indigo | 17 | 4 | | Chemistry detectives | 18 | 1 | | Why do onions make you cry? | 18 | 2 | | Dinosaur mummy | 18 | 3 | | Periodic table | 18 | 4 | | Face the truth | 19 | 1 | | Viral DNA packaging | 19 | 2 | | Quinine | 19 | 3 | | PET imaging of tumours | 19 | 4 | | The PET that got away | 20 | 1 | | Science beats food fraud | 20 | 2 | | Feeling the heat | 20 | 3 | | Polymers, plastics and superglue | 20 | 4 | | Gecko glue | 21 | 1 | | Chemistree: food dyes | 21 | 2 | | Perilous poisons | 21 | 3 | | The smell of success | 21 | 4 | | How hot is your chemistry? | 22 | 1 | | Rat wars | 22 | 2 | | You can't beat beetroot | 22 | 3 | | Celebrating the double helix | 22 | 4 | | Hydrogen fuel cells: Harnessing explosive energy | 23 | 1 | | Burning blue | 23 | 2 | | Feeling blue: Lobster rarities | 23 | 3 | | Super foods | 23 | 4 | | Follicle forensics | 24 | 1 | | Cracking down on chemical weapons | 24 | 2 | | Wake up and smell the coffee | 24 | 3 | | Can we grow gold on plants? | 24 | 4 | | 3, 2, 1, liftoff! | 25 | 1 | | Spectroscopy: At the heart of art | 25 | 2 | | Colouring the dinosaurs | 25 | 3 | | Lights in the deep | 25 | 4 | | Seeing with chemistry | 26 | 1 | | Back to Sherlock's crime scene | 26 | 2 | | Life-saving viper | 26 | 3 | | | | | | The two sides of thalidomide | 26 | 4 | |----------------------------------|----|---| | Fuelling Formula 1 | 27 | 1 | | Botulinum toxin: Killer of cure? | 27 | 2 | | Molecular cars | 27 | 3 | | Sunshine and vitamin D | 27 | 4 | | Conservation and cyclododecane | 28 | 1 | | Spectroscopy of space | 28 | 2 | | Valentine chemistry | 28 | 3 | | The chemistry of coral bleaching | 28 | 4 | | Radical clean-up | 29 | 1 | | Endangered elements | 29 | 2 | | For the fake of auld lang syne | 29 | 3 | | Creating the lunar seas | 29 | 4 | ## **Chemical Heroes** | Title | Vol. | Issue | |-----------------|------|-------| | A tough mistake | 11 | 1 | # **Chemistry in medicine** | Title | Vol. | Issue | |-----------------------------------|------|-------| | Photochemistry and drug synthesis | 28 | 2 | # Chemistry on the web / Chemistry online | Title | Vol. | Issue | |---------------------------------------------------------------|------|-------| | Webelements | 6 | 1 | | Finding information about degree courses | 6 | 2 | | Molecule of the Month | 6 | 3 | | Chemystery | 6 | 4 | | Buckminsterfullerenes | 7 | 1 | | Green pages | 7 | 2 | | Ring the changes with <i>Chime</i> | 7 | 3 | | Life, the universe and the electron | 7 | 4 | | Poison | 8 | 1 | | Fire! | 8 | 2 | | Green sites | 9 | 1 | | The Nobel prize | 9 | 2 | | A world of virtual chemistry | 9 | 3 | | A site for you | 9 | 4 | | Surf 'n' learn | 9 | 5 | | To boldly go | 10 | 1 | | Chemistry in the shed! | 10 | 2 | | Virtually isomeric | 10 | 3 | | No worries! | 10 | 4 | | Chocolate gingers | 11 | 1 | | The virtual library | 11 | 2 | | Plastastic! | 11 | 4 | | Find your way with the web index | 12 | 2 | | Catalysis for success! | 12 | 3 | | The double helix 50 years on | 12 | 4 | | Analyse this! | 13 | 1 | | British Antarctic Survey | 13 | 2 | | Transition metals in organic chemistry | 13 | 4 | | Light: the fuel of life | 14 | 1 | | Chemistry by numbers | 14 | 2 | | A greener industry | 14 | 3 | | Chemical role models | 15 | 1 | | The science of surfing | 15 | 2 | | Spectroscopy, mechanisms and calculations online | 15 | 3 | | A world of science just a click away | 15 | 4 | | The nano-world wide web | 16 | 1 | | Practical internet | 16 | 2 | | Extreme internet | 16 | 3 | | Bright sites: in search of the most useful chemistry websites | 16 | 4 | | Molecule of the month | 17 | 1 | | The great communicator | 17 | 2 | | Internet dating | 17 | 3 | | Chemistry in car engines | 17 | 4 | | iExperiment | 18 | 1 | | Professor Dave: Youtube chemist | 20 | 1 | | ChemSpider | 20 | 4 | | Envirocrew.org: sustainability works | 23 | 4 | | Picture itChemistry | 24 | 4 | |-------------------------------------|----|---| | Massive open online courses (Moocs) | 27 | 1 | ## Chemystery | Title | Vol. | Issue | |-------------------------------------------|------|-------| | The case of the missing scientist: part 1 | 18 | 1 | | The case of the missing scientist: part 2 | 18 | 2 | | The case of the missing scientist: part 3 | 18 | 3 | | The case of the missing scientist: part 4 | 18 | 4 | ## Did you know? | Title | Vol. | Issue | |--------------------------------|------|-------| | Optical isomers and penicillin | 27 | 1 | | Photoswitching isomers | 28 | 1 | | Knock knock | 28 | 3 | | Scrambled scientists | 29 | 1 | ## Encounter | Title | Vol. | Issue | |------------------------------------------------------------------------|------|-------| | Chemical landmarks of the twentieth century | 9 | 3 | | Chemistry in slow motion | 9 | 5 | | A date with the high and mighty of science | 10 | 2 | | Malcolm Cunnington: the man in the white coat! | 10 | 4 | | How snails could help repair broken bones | 12 | 1 | | Showcase Science 2005 | 15 | 2 | | Tracking your degree application | 15 | 4 | | Fruity electricity: Grätzel solar cells | 16 | 3 | | Extremophiles in New York | 16 | 4 | | Two pyrones and beyond | 17 | 1 | | Call to A-level students: preparations begin for Showcase Science 2009 | 18 | 2 | | Rainforest chemistry: investigating the atmosphere | 19 | 3 | | Cutting-edge chemistry | 20 | 3 | | Polymers and tulips: a year in industry | 21 | 1 | | AAAS Conference | 21 | 2 | | SeXeY chemistry | 22 | 4 | | Food waste: beyond the bin | 23 | 4 | | The life of a first-year chemistry student | 24 | 1 | | Three years or four? Completing a chemistry degree | 24 | 3 | | Revising 25 years of chemistry | 25 | 1 | | Preventing catastrophic climate change | 25 | 2 | | Treating the AIDS epidemic | 25 | 3 | | Feeding the world with chemistry | 25 | 4 | | Life in undergraduate labs | 26 | 3 | | Atmospheric camp at York | 26 | 4 | | Science Down Under | 27 | 2 | | Interview with Nobel prizewinner Bernard Feringa | 27 | 3 | | Solving climate change in a week | 27 | 4 | | Chemistry with altitude | 28 | 4 | | The elephant in the lab | 29 | 2 | | Chemistry in China | 29 | 4 | # **Focus on industry** | Title | Vol. | Issue | |---------------------------------------------------------------------------|------|-------| | Salt | 6 | 2 | | Making inks stick | 9 | 4 | | The perfect solution: taking catalyst recycling to a new level | 17 | 2 | | Phenol | 19 | 3 | | Polyamides | 20 | 1 | | Kevlar and composites | 20 | 2 | | Calcium carbonate (CaCO <sub>3</sub> ) | 21 | 1 | | Biotechnology | 21 | 3 | | Applications in agriculture: fertilisers | 22 | 1 | | Applications in agriculture: fungicides | 22 | 2 | | Applications in agriculture: herbicides | 22 | 3 | | Applications in agriculture: insecticides | 22 | 4 | | Catalysis: heterogeneous catalysts | 23 | 1 | | Applications of heterogeneous catalysts | 23 | 2 | | Catalysis: homogeneous catalysts | 23 | 3 | | Biotechnology in the chemical industry: biodegradable polymers | 24 | 1 | | Biotechnology in the chemical industry: biofuels | 24 | 2 | | Recent advances in biofuel production | 24 | 3 | | Biorefineries | 24 | 4 | | Copper | 25 | 1 | | Titanium | 25 | 2 | | Zinc | 25 | 3 | | Magnesium | 25 | 4 | | Colourants: Where does colour come from? | 26 | 1 | | Classifying colourants by method of application | 26 | 2 | | Pigments and high-tech colourants: What are the technical applications of | 26 | 3 | | colour? | | | | Making paint | 26 | 4 | | Squeaky clean with surfactants | 27 | 2 | | Soap and other surfactants | 27 | 3 | | Chemicals in cleaning | 27 | 4 | | Extracting oil and gas | 28 | 1 | | What happens in an oil refinery? | 28 | 2 | | Cracking and related refinery processes | 28 | 3 | | Fracking | 28 | 4 | | Aluminium | 29 | 1 | | Iron | 29 | 1 | | Steel | 29 | ļ | | Lead | 29 | | # How chemistry works / How science works | Title | Vol. | Issue | |-----------------------------------------------|------|-------| | Modelling the atom | 17 | 1 | | The noble gases: not so unreactive after all | 17 | 3 | | How the periodic table was born | 17 | 4 | | What is everything made from? | 18 | 3 | | Boyle's and Charles' laws: a load of hot air? | 19 | 1 | | Peer review: avoiding media scare stories | 19 | 2 | | To err is scientific | 20 | 4 | | Patents: protecting your ideas | 22 | 4 | | Making alkenes: the Wittig reaction | 23 | 2 | | Nuclear Magnetic Resonance | 24 | 4 | | Investigating the structure of nucleic acids | 28 | 2 | | The future of the periodic table | 28 | 4 | | Energy | 29 | 1 | | The f-block elements | 29 | 3 | | Fighting fallacies in chemistry communication | 29 | 3 | | Myth busting | 29 | 4 | # In pictures | Title | Vol. | Issue | |---------------------------------------------------|------|-------| | Structure of insulin | 1 | 1 | | A closer look at clay | 1 | 2 | | A hydrogen plant | 1 | 3 | | The work of a conservator | 1 | 4 | | Models of atoms | 1 | 5 | | Different forms of carbon | 2 | 1 | | The Periodic Table | 2 | 2 | | What happens in a Bunsen flame? | 2 | 3 | | Fast & fresh (sandwiches) | 2 | 4 | | From dolomite to magnesium oxide | 2 | 5 | | Versatile silicones | 3 | 1 | | Infrared spectrometry | 3 | 2 | | Gold, frankincense and myrrh | 3 | 3 | | History of the atmosphere | 3 | 4 | | Chemistry can detect faulty genes | 3 | 5 | | A prize collection (Nobel prize winners & stamps) | 4 | 1 | | Gas chromatography | 4 | 2 | | Water | 4 | 3 | | Molecular fossils | 4 | 4 | | The rocaglamide story | 4 | 5 | | Getting your pinta from the cow | 5 | 1 | | Salt of the earth | 5 | 2 | | Fractional Distillation | 5 | 3 | | Nobel | 5 | 4 | | Nuclear magnetic resonance | 5 | 5 | | First class organic chemistry | 6 | 1 | | Ways of representing proteins | 6 | 2 | | Chemistry in the open air | 6 | 3 | | Mass spectrometry | 6 | 4 | | Water treatment | 6 | 5 | | A breath of fresh air | 7 | 1 | | Chocolate | 7 | 2 | | Challenge of materials | 7 | 3 | | Thermal analysis | 7 | 4 | | Seeing atoms | 7 | 5 | | pH: Who needs to know | 8 | 1 | | Medicines in the garden | 8 | 2 | | Chemistry under the microscope | 8 | 3 | | Chemistry on track | 8 | 4 | | The brewer's art | 8 | 5 | | Gemstones | 9 | 1 | | Fireworks | 9 | 2 | | Molecules of the millennium | 9 | 3 | | Generating electricity | 9 | 4 | | Testing air quality | 9 | 5 | | Visual elements | 10 | 1 | | Phosphorus | 10 | 2 | | Chemistry colour & light 10 4 Food to dye for 11 1 Antioxidants 11 2 Biodiesel 11 3 Polymer protected professionals 11 4 Dyeing hair 12 1 The barking dog 12 2 Around the world with chemistry 12 3 Modelling the double helix 12 4 Machair 13 1 The heart is on 13 3 Molecules in a virtual world 13 4 The Magnificent Seven: magic bullets of 21st century 14 1 Science is art 14 2 Antiffereze 14 3 Magnetic resonance imaging 14 4 Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 <th>It's a chiral world!</th> <th>10</th> <th>3</th> | It's a chiral world! | 10 | 3 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----|---| | Food to dye for | | | | | Antioxidants 11 2 Biodiesel 11 3 Polymer protected professionals 11 4 Dyeing hair 12 1 The barking dog 12 2 Around the world with chemistry 12 3 Modelling the double helix 12 4 Machair 13 1 The heat is on 13 3 Molecules in a virtual world 13 4 The Magnificent Seven: magic bullets of 21st century 14 1 Science is at 14 2 Antifreeze 14 3 Magnetic resonance imaging 14 4 Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered | • | | | | Biodiese 11 | | | | | Polymer protected professionals | | | | | Dyeing hair | | | | | The barking dog | | ļ | | | Around the world with chemistry Modelling the double helix 12 4 Modelling the double helix 13 1 The heat is on 13 3 Molecules in a virtual world The Magnificent Seven: magic bullets of 21st century Science is art 14 2 Antifreeze Antifreeze 14 3 Magnetic resonance imaging Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark Stimulating chemistry 16 1 Copper on tap? Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 Hydrogen bonds: holding the world together The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel Chemistry of the cosmos Decoding skeletal secrets 22 1 Kevlar: miracle material Hair-raising chemistry 23 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 28 4 Periodic table completed? Periodic table completed? What shape is my molecule? 28 4 Periodic table completed? What shape is my molecule? 29 2 Priodelipant's toothpaste experiment 29 2 Priodelipant's toothpaste experiment 29 2 Priodelic table completed? Priodelic table completed? Priode chemistry Priodelic table completed? Priodelic table c | | | | | Modelling the double helix 12 4 Machair 13 1 The heat is on 13 3 Molecules in a virtual world 13 4 The Magnificent Seven: magic bullets of 21sl century 14 1 Science is art 14 1 Antifreeze 14 3 Magnetic resonance imaging 14 4 Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 1 Seeing the annoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry of the cosmos 21 3 | <u> </u> | | | | Machair 13 1 The heat is on 13 3 Molecules in a virtual world 13 4 The Magnificent Seven: magic bullets of 21st century 14 1 Science is art 14 2 Antifreeze 14 3 Magnetic resonance imaging 14 4 Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 1 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 <td< td=""><td></td><td></td><td></td></td<> | | | | | The heat is on 13 3 Molecules in a virtual world 13 4 4 1 1 1 1 1 1 1 1 | | | | | Molecules in a virtual world | | | | | The Magnificent Seven: magic bullets of 21st century 14 1 Science is art 14 2 Antifreeze 14 3 Magnetic resonance imaging 14 4 Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 4 The disguises of carbon 18 1 1 Hydrogen bonds: holding the world together 18 1 The Martian poles 19 1 4 Atoms to patterns 19 2 1 3 Chemistry in the atmosphere 19 3 3 1 3 1 3 1 3 1 4 4 4 4 4 4 4 4 | | | _ | | Science is art 14 2 Antifreeze 14 3 Magnetic resonance imaging 14 4 Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 1 The Martian poles 19 1 Atoms to patterns 19 1 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray | | ļ | 1 | | Antifreeze 14 3 Magnetic resonance imaging 14 4 Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 <td></td> <td>ļ</td> <td></td> | | ļ | | | Magnetic resonance imaging 14 4 Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet | | ļ | | | Probably the most important reactions in the world 15 2 Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 1 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 26 2 Mass, moles and gas equations | | | | | Camping with chemistry 15 3 Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 21 3 Kevlar: miracle material 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 <td></td> <td></td> <td></td> | | | | | Rocks that glow in the dark 15 4 Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 | | | | | Stimulating chemistry 16 1 Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 21 3 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 <td></td> <td></td> <td></td> | | | | | Copper on tap? 16 2 Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 The chemistry behind baking 27 <t< td=""><td></td><td>ļ</td><td>1</td></t<> | | ļ | 1 | | Seeing the nanoworld: atomic structures and reaction dynamics 17 2 Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 2 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27< | | | | | Getting plastered 17 4 The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 2 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 <td></td> <td>ļ</td> <td></td> | | ļ | | | The disguises of carbon 18 1 Hydrogen bonds: holding the world together 18 4 The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 2 Know your glassware 26 3 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4< | | - | | | Hydrogen bonds: holding the world together The Martian poles 19 1 Atoms to patterns Chemistry in the atmosphere 19 3 Magnetic marvel Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 42 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world Medicinal or murderous: Analysing a Victorian medicine cabinet 25 1 Is every snowflake unique? Ass, moles and gas equations Know your glassware 26 1 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 What shape is my molecule? 29 1 The elephant's toothpaste experiment | 0.1 | ļ | | | The Martian poles 19 1 Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 | <u>v</u> | | 4 | | Atoms to patterns 19 2 Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 What shape is my molecule? 28 4 Cave chemistry 29 1 Th | | | | | Chemistry in the atmosphere 19 3 Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 2 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 What shape is my molecule? 28 4 Cave chemistry 29 1 The elephant's toothpaste experiment 29 2 | | 19 | 2 | | Magnetic marvel 20 2 Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 What shape is my molecule? 28 4 Cave chemistry 29 1 The elephant's toothpaste experiment 29 2 | | | | | Chemistry of the cosmos 21 3 Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 What shape is my molecule? 28 4 Cave chemistry 29 1 The elephant's toothpaste experiment 29 2 | | | 2 | | Decoding skeletal secrets 22 1 Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 What shape is my molecule? 28 4 Cave chemistry 29 1 The elephant's toothpaste experiment 29 2 | | | 3 | | Kevlar: miracle material 22 4 Hair-raising chemistry 23 1 X-ray eyes on a molecular world 25 1 Medicinal or murderous: Analysing a Victorian medicine cabinet 25 3 Periodic table updated 26 1 Is every snowflake unique? 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 What shape is my molecule? 28 4 Cave chemistry 29 1 The elephant's toothpaste experiment 29 2 | , , , , , , , , , , , , , , , , , , , | 22 | 1 | | Hair-raising chemistry231X-ray eyes on a molecular world251Medicinal or murderous: Analysing a Victorian medicine cabinet253Periodic table updated261Is every snowflake unique?262Mass, moles and gas equations263Know your glassware264The chemistry behind baking271Raku pottery: Redox in action273Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | <u> </u> | | | | X-ray eyes on a molecular world251Medicinal or murderous: Analysing a Victorian medicine cabinet253Periodic table updated261Is every snowflake unique?262Mass, moles and gas equations263Know your glassware264The chemistry behind baking271Raku pottery: Redox in action273Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | | | 1 | | Medicinal or murderous: Analysing a Victorian medicine cabinet253Periodic table updated261Is every snowflake unique?262Mass, moles and gas equations263Know your glassware264The chemistry behind baking271Raku pottery: Redox in action273Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | | | 1 | | Periodic table updated261Is every snowflake unique?262Mass, moles and gas equations263Know your glassware264The chemistry behind baking271Raku pottery: Redox in action273Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | | | 3 | | Is every snowflake unique? 26 2 Mass, moles and gas equations 26 3 Know your glassware 26 4 The chemistry behind baking 27 1 Raku pottery: Redox in action 27 3 Saving SS Great Britain: Redox in action 27 4 Elements of smartphones 28 1 Flying over fires 28 2 Periodic table completed? 28 3 What shape is my molecule? 28 4 Cave chemistry 29 1 The elephant's toothpaste experiment 29 2 | | 26 | 1 | | Mass, moles and gas equations263Know your glassware264The chemistry behind baking271Raku pottery: Redox in action273Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | 1 | | 2 | | Know your glassware264The chemistry behind baking271Raku pottery: Redox in action273Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | · · · | | 3 | | The chemistry behind baking271Raku pottery: Redox in action273Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | | | 4 | | Raku pottery: Redox in action273Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | • • | | - | | Saving SS Great Britain: Redox in action274Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | | 27 | 3 | | Elements of smartphones281Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | | | | | Flying over fires282Periodic table completed?283What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | | | 1 | | Periodic table completed? 28 3 What shape is my molecule? 28 4 Cave chemistry 29 1 The elephant's toothpaste experiment 29 2 | 1 | | | | What shape is my molecule?284Cave chemistry291The elephant's toothpaste experiment292 | | | | | Cave chemistry291The elephant's toothpaste experiment292 | | | - | | The elephant's toothpaste experiment 29 2 | | 1 | | | | | | | | | Do you know your functional groups? | 29 | 3 | | ACIUS AIIU IIICII USCS | 29 | 4 | ı | |------------------------|----|---|---| |------------------------|----|---|---| ## Lab page | Title | Vol. | Issue | |----------------------------------------------------------------------|------|-------| | Recrystallisation - purification of solids | 2 | 5 | | Thin-layer chromatography TLC | 3 | 1 | | Making standard solutions | 3 | 2 | | Using a separating funnel | 3 | 3 | | Distillation | 3 | 4 | | Melting point determination | 3 | 5 | | Measuring pH | 4 | 1 | | Extracting and studying enzymes | 4 | 2 | | Measuring volume | 4 | 3 | | Solvent extraction | 4 | 4 | | Colorimeters | 4 | 5 | | Growing crystals | 5 | 1 | | Safe heating | 5 | 2 | | Observing | 5 | 3 | | Electrochemical cells | 5 | 4 | | Steam distillation | 5 | 5 | | Volumetric analysis | 6 | 1 | | Testing for metal ions | 6 | 2 | | Separating solids from liquids | 6 | 4 | | Handling gases | 6 | 5 | | Testing for gases | 7 | 1 | | Measuring the boiling point of a liquid | 7 | 5 | | Measuring pH | 8 | 1 | | What is chromatography? | 8 | 2 | | Recrystallisation | 8 | 4 | | Refluxing and distillation | 9 | 2 | | Calorimetry | 9 | 4 | | Assessing the risks in practical work | 10 | 1 | | Oxidation of alcohols | 10 | 4 | | Experimental error and error analysis | 11 | 2 | | Making a standard solution | 12 | 2 | | Colorimetry | 12 | 3 | | Observing and recording | 13 | 1 | | Distillation | 14 | 1 | | Not all indicators are equal | 14 | 2 | | Thin layer chromatography | 14 | 3 | | Melting points and boiling points | 14 | 4 | | Electrode potentials | 15 | 3 | | How to be a lab success: using QuickFit apparatus | 16 | 1 | | How to be a lab success: titrations, crystals, separating and mixing | 16 | 4 | | Identifying an unknown organic compound | 17 | 3 | | Planning your own experiment | 19 | 3 | | Heating under reflux | 20 | 2 | | Infrared spectrometers | 21 | 2 | | Flame tests and emission spectra | 21 | 4 | | Recrystallisation | 22 | 2 | | Determining the yield of a reaction | 22 | 3 | | Performing the perfect titration | 23 | 2 | |----------------------------------------------------|----|---| | Steam distillation | 23 | 3 | | Chromatography | 24 | 3 | | Extracting caffeine from tea leaves | 25 | 1 | | How to make skin cream | 25 | 2 | | Esterification | 25 | 3 | | Synthesising aspirin | 26 | 1 | | Nitration of an arene | 26 | 2 | | Make your own dye | 26 | 3 | | Volumetric analysis | 27 | 2 | | Testing turmeric | 27 | 4 | | Constructing an electrochemical cell | 28 | 4 | | Analysing limescale remover by acid-base titration | 29 | 2 | # Making and doing | Title | Vol. | Issue | |--------------------------------------------|------|-------| | Model of buckminsterfullerene | 1 | 1 | | Models of Clay | 1 | 2 | | Elementary crossword | 1 | 3 | | Asymmetric crystals of tartaric acid salts | 1 | 4 | | Spreadsheets for calculations | 1 | 5 | | Gas testing crossword | 2 | 1 | | Models of zeolites | 2 | 2 | | Wordsearch | 2 | 3 | | Cooking with dough | 2 | 4 | | Crossword | 3 | 1 | | Puzzle page | 3 | 2 | | Solid liquid | 3 | 4 | | Model of DNA molecule | 3 | 5 | | Elementary spelling | 4 | 1 | | History of the Bunsen burner | 4 | 3 | | Using natural dyes | 4 | 5 | | Chemical definitions | 5 | 1 | | Crystal-growing challenge | 5 | 2 | | The sweet smell of danger | 5 | 3 | | Quiz | 5 | 4 | | Chemical dingbats | 5 | 5 | | Polymer word search | 6 | 1 | | Anagrams | 6 | 2 | | Dr Beaker | 6 | 5 | | Element search | 7 | 1 | | Chemistry is fun | 7 | 2 | | Surface tension | 7 | 3 | | Logical chemistry | 8 | 1 | | Neils Bohr puzzle | 8 | 2 | | Gakistuf | 9 | 1 | | Dr Beaker | 9 | 2 | | Dr Beaker | 9 | 4 | | Fun with hydrogels | 10 | 2 | | 3D models | 10 | 3 | | Fizz: making sherbet | 11 | 1 | | Calculating carbon dioxide | 11 | 2 | | Popcorn explosions | 12 | 1 | | Bubbles | 12 | 3 | | DIY DNA | 12 | 4 | | Chemical dingbats | 14 | 1 | | More chemical dingbats | 14 | 2 | | Inkvestigation | 15 | 1 | | Chemical crossword | 15 | 2 | | Chemical sudoku | 15 | 3 | | Elemental sudoku | 15 | 4 | | Poetic chemistry | 16 | 1 | | Elementary crossword | 17 | 1 | | 7<br>8<br>9<br>.0<br>.0 | 3<br>4<br>2<br>1 | |-------------------------|---------------------------------------------------------------------------| | 9 .0 .0 | 2 | | 0.0 | 1 | | .0 | | | | 2 | | | 3 | | 1 | 4 | | 2 | 1 | | .3 | 1 | | 4 | 1 | | 4 | 2 | | .5 | 1 | | 5 | 2 | | 5 | 3 | | 6 | 1 | | 6 | 2 | | .7 | 2 | | .7 | 3 | | .7 | 4 | | .8 | 3 | | .9 | 1 | | .9 | 1 | | .9 | 3 | | .9 | 3 | | .9 | 4 | | | 1 2 2 3 3 4 4 4 4 5 5 5 5 5 6 6 6 7 7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | # People / All in a day's work / Careers in chemistry | Name | Job | Vol. | Issue | |-----------------------|------------------------------------------------------------------------------------------------------------|------|-------| | Hart, Judith | Freelance Journalist | 1 | 3 | | Knight, Barry | Ancient Monument Laboratories (English Heritage) | 1 | 4 | | Gregory, Peter | Senior Scientist (ICI Specialty Colours Group) | 2 | 3 | | Hamer, Pam | Forensic Scientist | 2 | 5 | | Senior, Clare | Analytical Chemist in Packaging Research | 3 | 4 | | Crawley, Frank | Chemical Engineer (ICI, BP), Authority on safety of industrial processes | 4 | 3 | | Tarasova, Natalia | Radiation Chemist, Professor of Industrial Ecology,<br>Mendeleev University of Chemical Technology, Moscow | 4 | 4 | | Hutchinson, Ann | Process Chemist (Rhone-Poulenc Agriculture) | 5 | 1 | | Sutton, Jane | Press and Publicity Officer (Royal Society of Chemistry) | 5 | 2 | | Osman, Robert | Plant Manager, Pigment Dispersion Plant, Yorkshire Chemicals | 5 | 3 | | Owen, Nick | Innovations Marketing Manager, Hickson & Welch | 5 | 4 | | Hewitt, Chris | Brand Manager, Aldrich UK | 5 | 5 | | Hazel, Nick | Issues Manager, BP Chemicals | 6 | 1 | | Hodgson, Anne | University Chemistry Department | 6 | 3 | | Levitt, Melissa | Commissioning Editor | 6 | 5 | | Hockley, Sian | Patent Agent | 7 | 5 | | Julie Hall | Antarctic Research | 8 | 2 | | Louise Scarry | Granular Detergent Technology | 8 | 5 | | O'Brien, Peter | University Lecturer | 9 | 3 | | Walker, Karen | Agrochemical Registration Specialist | 9 | 5 | | Tinkler, Suzanne | Confectionery product developer | 11 | 4 | | Wevill, Dave | Antarctic Survey | 13 | 2 | | Barnham, Rachel | Forensic Scientist | 14 | 3 | | Macdonald,<br>Anthony | Biomedical researcher | 18 | 4 | | Hardy, Jeff | UK Energy Research Centre | 19 | 4 | | Davison, Rachael | Cosmetic scientist | 29 | 2 | # Project page | Title | Vol. | Issue | |-----------------------------------------|------|-------| | Decomposing hydrogen peroxide | 5 | 1 | | What's in water? | 5 | 2 | | The reactions of metals with acids | 5 | 3 | | Making light of Project work | 5 | 4 | | There's more to Vitamin C than Brussels | 5 | 5 | | Reactions that don't add up | 6 | 1 | | Clock reactions | 6 | 2 | | Aspirin | 6 | 3 | | Investigating enzymes | 6 | 4 | | How accurate are titrations? | 7 | 1 | | What's in wine | 7 | 3 | | Ion exchange resins | 7 | 4 | | Oscillating reactions | 8 | 3 | | Adsorption and inclusion | 8 | 4 | | Concentration of copper ions | 9 | 1 | | Dyes and dyeing | 10 | 1 | | A Reaction that speeds itself up | 11 | 3 | | Anyone for spaghetti and peas? | 11 | 4 | | How quickly does bleach deteriorate? | 16 | 3 | ## Remember remember | Title | Vol. | Issue | |------------------------|------|-------| | Using mnemonic methods | 8 | 1 | | The story system | 8 | 2 | | The loci system | 8 | 3 | | The peg method | 8 | 4 | ## Research team | Title | Vol. | Issue | |------------------------------------------------|------|-------| | Are you part of a research team? | 8 | 1 | | Naphthazarin, PDT and the fight against cancer | 8 | 2 | | The problem with PET | 8 | 4 | | Are you part of a research team? | 9 | 1 | | Nitric oxide as a synthetic reagent | 9 | 5 | | Pushing back the frontiers | 10 | 1 | ## **Revision note** | Title | Vol. | Issue | |--------------------------------------------------------|------|-------| | Bonding between molecules | 1 | 1 | | Spectroscopy | 1 | 2 | | Electrolysis | 1 | 3 | | Shapes of molecules and electron pair repulsion theory | 1 | 4 | | Interpreting mass spectra | 1 | 5 | | What makes a reaction go? | 2 | 1 | | Redox (and oxidation numbers) | 2 | 2 | | Energy profiles | 2 | 3 | | An overview of organic reactions | 2 | 4 | | Acids | 2 | 5 | | The Periodic Table | 3 | 1 | | Testing for functional groups | 3 | 2 | | A new angle on bonding | 3 | 3 | | Solidification of solutions | 3 | 4 | | Melting point determination | 3 | 5 | | The transition metals | 4 | 1 | | Naming aliphatic organic compounds | 4 | 2 | | Keeping track of energy changes | 4 | 5 | | Drawing organic compounds | 5 | 1 | | Born-Haber cycles and lattice energies | 5 | 2 | | Melting and boiling points | 5 | 3 | | Keeping things short | 5 | 4 | | Acids & bases | 5 | 5 | | Acid-base indicators and buffer solutions | 6 | 1 | | Ultraviolet and visible spectra | 6 | 2 | | Kinetics | 6 | 4 | | Group 4 | 6 | 5 | | Identifying gasses | 7 | 1 | | Intermolecular bonds | 7 | 2 | | Isomerism | 7 | 3 | | | 8 | 1 | | Halogens Spider diagrams | 8 | 2 | | Spider diagrams The alkanes | 8 | 3 | | | 9 | 1 | | Changing state Exam tactics | 9 | | | | 9 | 3 | | Transition metal complexes I | 9 | | | Transition metal complexes II | - | 4 | | Organic synthetic pathways | 9 | 5 | | What is isomerism? | 10 | 3 | | Amines | 10 | 4 | | Gases Part 1 | 11 | 1 | | Calculations involving masses | 11 | 2 | | Gases Part 2 | 11 | 3 | | Trends in period 3 elements | 11 | 4 | | The elements in group 2 | 12 | 2 | | Titrations | 12 | 3 | | Nucleophiles | 12 | 4 | | Moles – the basics | 13 | 1 | |------------------------------------------------------------|----|---| | Calculating pH | 13 | 2 | | Carboxylic acids | 13 | 3 | | Establishing a rate equation | 14 | 2 | | Aliphatic organic compounds | 15 | 1 | | Summary of reactions for benzene/aromatic compounds | 15 | 2 | | From creaking joints to saving a steamship | 15 | 3 | | Bonding: sticking atoms together | 16 | 1 | | Interpreting infrared spectra | 16 | 2 | | Classifying organic reactions | 16 | 3 | | Trends in ionisation energy | 17 | 3 | | Acids and bases: a whistle-stop tour | 18 | 2 | | Acids and bases: developing ideas further | 18 | 3 | | Oxides of carbon | 20 | 1 | | Solid foundations: part 1 | 21 | 3 | | Solid foundations: part 2 | 21 | 4 | | Tackling stretch and challenge questions | 22 | 4 | | Copper sulfate and ammonia: stretch and challenge question | 23 | 4 | | Understanding NMR spectra | 24 | 4 | | Nucleophilic substitution | 26 | 3 | | Electrophilic substitution of aromatic rings | 26 | 4 | | Know your units | 27 | 3 | | The continuum of bonding | 28 | 1 | | Disentangling polarity | 28 | 2 | | Maxwell-Boltzmann distribution curves | 29 | 4 | ## **Scientists of substance** | Title | Vol. | Issue | |-----------------------------------------------------------------------------|------|-------| | Mendeleev, creator of the chemists' logo | 13 | 1 | | John Newlands | 13 | 2 | | Harry Moseley | 13 | 3 | | Fritz Haber | 13 | 4 | | John Priestly | 14 | 1 | | Sir William Ramsay | 14 | 2 | | Sir Humphry Davy | 14 | 4 | | Linus Pauling | 15 | 1 | | Thomas Midgely | 15 | 2 | | Gilbert N. Lewis: his acids and bases | 15 | 3 | | Glenn T. Seaborg: creator of elements | 15 | 4 | | Lise Meitner: radiochemist, physicist and co-discoverer of nuclear fission | 16 | 1 | | Ida Tacke-Noddack: co-discoverer of rhenium and nuclear fission | 16 | 2 | | Rosalind Franklin: physical chemist, X-ray crystallographer and DNA pioneer | 16 | 3 | | Marguerite Perey: discoverer of francium | 16 | 4 | | Organic growth from Deutsche Chemiker | 17 | 1 | | More organic growth from Deutsche Chemiker: Liebig and Wöhler | 17 | 2 | | Seeds of structural organic chemistry: August Kekulé | 17 | 3 | | Adolf von Baeyer and Victor Meyer | 17 | 4 | | Avogadro: count and counting chemist | 18 | 1 | | John Dalton: Quaker scientist and law maker | 18 | 2 | | van der Waals: famous for recognising feeble forces | 18 | 3 | | Michael Faraday | 18 | 4 | | Dorothy Crowfoot Hodgkin: great discoveries in X-ray crystallography | 19 | 4 | | Carothers: inventor of nylon | 20 | 1 | | Kwolek: creator of Kevlar | 20 | 2 | | Benerito: the chemist who banished ironing | | 3 | | Marie Curie: probing the atom | | 2 | | The fascinating Fenton reaction | 22 | 1 | | Rachel Louise Carson: Environmental champion | 27 | 2 | ## Substances | Title | Vol. | Issue | |----------------------------------------|------|-------| | Tin and lead | 4 | 1 | | Iodine | 4 | 2 | | Methyl mercaptan | 4 | 3 | | Sodium carbonate | 4 | 4 | | Argon - in the spotlight | 4 | 5 | | Helium | 5 | 1 | | Platinum | 5 | 2 | | Nitric Acid | 5 | 3 | | Propanone | 5 | 4 | | Iodine | 5 | 5 | | Hydrogen peroxide | 6 | 1 | | Alumina | 6 | 2 | | Silica | 6 | 3 | | Nitric oxide | 6 | 4 | | Mixed oxides | 6 | 5 | | Chlorides | 7 | 1 | | Potassium chloride | 7 | 2 | | Aluminium chloride | 7 | 3 | | Cl <sub>4</sub> and SiCl <sub>4+</sub> | 7 | 4 | | HCl | 7 | 5 | | Butane | 8 | 3 | | Ethanoic acid | 8 | 4 | | Phenol | 8 | 5 | | Aluminium | 9 | 2 | | Caesium | 9 | 3 | | Sulfur | 9 | 4 | | Cyanides | 10 | 1 | | Chlorine | 10 | 2 | | A bitter isomerisation | 10 | 3 | | Carbon monoxide | 10 | 4 | | Strontium | 11 | 1 | | Gallium | 11 | 2 | | Selenium | 11 | 3 | | Hydrogen | 12 | 1 | | Chromium | 12 | 3 | | Bromine | 12 | 4 | | Hydrogen sulfide | 13 | 1 | | Titanium | 13 | 3 | | Nitrogen oxides | 14 | 1 | | Ozone | 14 | 2 | | Carbohydrates | 14 | 4 | | Carboxylic acids | 15 | 1 | | Hydrogen: alkali metal or halogen? | 15 | 2 | | Lithium | 15 | 3 | | Supercritical carbon dioxide | 16 | 3 | | Silicones and silanes | 16 | 4 | | Platinum: not just for jewellery | 17 | 4 | | The fight against bacteria: every cloud has a silver lining | 18 | 1 | |-------------------------------------------------------------|----|---| | Deadly beauty | 18 | 3 | | Finding a fix | 19 | 1 | | Graphene | 19 | 2 | | Vanadium | 19 | 4 | | Calcium carbonate | 20 | 3 | | Water water everywhere | 20 | 4 | | Iridium: life-saving transition element | 21 | 2 | | Cocaine: atoms of addiction | 21 | 3 | | Aerogel: 'frozen smoke' | 21 | 4 | | Tetrodotoxin: famously deadly poison | 22 | 2 | | All things ice | 22 | 3 | | Iodine in medicine | 23 | 1 | | Magnesium | 23 | 3 | | Looking into glass | 23 | 4 | | Hydrogen cyanide: Poison and precursor | 25 | 2 | | Barium | 25 | 4 | | Analgesics | 27 | 1 | | Turmeric: Medicinal applications | 27 | 4 | | Sugar: A bittersweet tale? | 29 | 4 | # Top tips | Title | Vol. | Issue | |-------------------------------------------------|------|-------| | Getting the language right | 7 | 1 | | Oxidation states | 7 | 2 | | The shapes of molecules | 7 | 3 | | Calculations involving amounts | 8 | 1 | | Identifying reactions (1) | 8 | 4 | | Identifying reactions (2) | 8 | 5 | | Calculating yields in chemical reactions | 9 | 2 | | Drawing enthalpy cycles | 9 | 3 | | Interpreting mass spectra | 10 | 1 | | Interpreting NMR spectra | 10 | 2 | | Writing structural isomers using stick formulae | 10 | 3 | | Tackling chemical calculations | 10 | 4 | | Know your Ks | 11 | 4 | | Understanding electrode potentials | 12 | 1 | | Using electrode potentials | 12 | 2 | | Balancing equations | 12 | 3 | | Using oxidation states | 12 | 4 | | Van der Waals Forces | 13 | 1 | | Classifying organic reactions | 13 | 2 | | Measuring the rate of a chemical reaction | 14 | 1 | | Born Haber Cycles | 14 | 4 | | What's in a word? | 15 | 1 | | Watch your language! | 15 | 2 | | Hess's Law | 15 | 4 | | Guidelines for drawing organic structures | 16 | 1 | | Shapes in inorganic chemistry | 16 | 2 | | Drawing lab diagrams | 16 | 4 | | Representing chemical reactions | 17 | 1 | | Drawing reaction mechanisms | 18 | 1 | | Drawing radical reaction mechanisms | 18 | 2 | | Atom economy: avoiding chemical waste | 19 | 2 | | Naming esters | 19 | 3 | | Tracking your degree application | 19 | 4 | | Making use of electrode potentials | 22 | 3 | | Hess cycles and the MASK check | 24 | 2 | | Amino acids in chemistry | 25 | 2 | | Succeeding in chemistry without A-level maths | 25 | 4 | | Dealing with significant figures | 26 | 1 | | Esterification mechanisms | 27 | 3 | | Naming $(R/S)$ isomers | 29 | 3 | # Wonders of chemistry | Title | Vol. | Issue | |-------------------------------------------------------|------|-------| | Liquid breathing | 11 | 1 | | Paved with titanium | 11 | 2 | | Saving reefs from grief | 11 | 3 | | Self-healing plastic | 11 | 4 | | Windows that clean themselves | 12 | 2 | | Twenty-first century batteries | 12 | 4 | | Seeing with selenium | 13 | 2 | | Solution to a sticky problem: non-drip ice-lollies | 13 | 3 | | Tougher than a speeding bullet | 13 | 4 | | The future's bright, the future'stritium | 14 | 2 | | Luminol: shedding the light on 'hidden' evidence | 14 | 3 | | Potty power: microbial fuel cells | 14 | 4 | | Cracking concrete heals itself | 21 | 1 | | Molybdenite Valley? The search for new semiconductors | 22 | 2 | | Won't you step into my parlourspider silk | 23 | 2 | | Molecules of revision | 23 | 4 | | Graphene and carbon nanotubes | 24 | 1 | | The jeans that eat pollution | 24 | 2 | | Lyotropic liquid crystals: essential for life | 24 | 3 | | X-rays reveal a lost treasure | 25 | 2 | | Solar power: nature does it better | 28 | 1 | | Elements old and new | 28 | 3 | | Chameleon colour changes | 29 | 2 | | Recharging the batteries | 29 | 3 | # Worth reading | Title | Vol. | Issue | |--------------------------------------------------------------------------------|------|-------| | Molecules at an Exhibition | 8 | 4 | | Nitroglycerine | 9 | 2 | | The Shocking History of Phosphorus: a biography of the Devil's element | 10 | 2 | | The X-ray detective | 11 | 1 | | Science, not art: ten scientists' diaries | 14 | 1 | | Uncle Tungsten | 14 | 4 | | Better Looking, Better Living, Better Loving: How chemistry can help you | 17 | 2 | | achieve life's goals | | | | Eurekas and Euphorias: The Oxford Book of Scientific Anecdotes | 18 | 3 | | Max Perutz and the Secret of Life | 18 | 4 | | Chemistry <sup>3</sup> : introducing inorganic, organic and physical chemistry | 19 | 2 | | A Healthy, Wealthy, Sustainable World | 20 | 4 | | The Elements – a very short introduction | 21 | 1 | | Nature's Building Blocks (2 <sup>nd</sup> edition) | 21 | 2 | | Molecules with Silly or Unusual Names | 21 | 4 | | Breverton's Encyclopedia of Inventions | 22 | 2 | | 30-Second Elements | 22 | 3 | | Every Molecule Tells a Story | 24 | 2 | | Molecules That Amaze Us | 25 | 3 | | The Sun and moons | 27 | 1 | | The Disappearing Spoon | 28 | 1 | | Periodic Tales: the Curious Lives of the Elements | 28 | 3 | | Reactions: the Private Life of Atoms | 28 | 4 | # Themed articles (one-off series) | Title | | Vol. | Issue | |------------------------|-------------------------------------------------------|------|-------| | Chemistry and the | Nitrogen and phosphorus in estuaries | 7 | 1 | | environment | | | | | | Mountains of waste | 7 | 2 | | | SO <sub>2</sub> and acid rain | 7 | 3 | | | Climate change and CO <sub>2</sub> | 7 | 4 | | | Tracing oil spills at sea | 7 | 5 | | Chemistry and health | Quinine – one of the great molecules | 8 | 1 | | | Metals in medicine | 8 | 2 | | | Body parts from the polymer lab | 8 | 3 | | | The discovery of Ventolin | 8 | 4 | | Green chemistry | Catalysts | 9 | 1 | | | Green beans? | 9 | 2 | | | Environmental solutions | 9 | 3 | | | Plants of the future | 9 | 4 | | | Atom efficiency and catalysis | 9 | 5 | | Chemistry in space | DIBs: a great unsolved mystery | 10 | 1 | | спенияну иг врасс | What a dusty universe! | 10 | 2 | | | Space: the first and last great brewery | 10 | 3 | | | Beagle 2: looking to explore a blurred vision of life | 10 | 4 | | | on Mars | | ' | | A taste for chemistry | Cool chemistry: what's in an ice cream? | 11 | 1 | | 11 tuste for enemistry | Cooked to a turn! Non-enzymic browning in food | 11 | 2 | | | A root to white sugar: how to turn a plant into | 11 | 3 | | | something sweet | 11 | | | | Understanding cocoa flavour | 11 | 4 | | Chemistry everywhere | Curly locks | 12 | 1 | | Shemistry everywhere | Roast beef and ashes to vegetarian shampoo | 12 | 2 | | | All you should know about dough | 12 | 3 | | | The ultra-blue: the story of ultramarine | 12 | 4 | | Forensic chemistry | The chemistry of fingerprints | 13 | 1 | | 1 orensie enemistry | Resurrecting the past | 13 | 2 | | | Behind the scenes at the National Gallery | 13 | 3 | | | Drugs on money | 13 | 4 | | Fuelling the future | Electricity generation | 14 | 1 | | T defining the future | Electricity, the next generation | 14 | 2 | | | Driving towards a cleaner future | 14 | 3 | | | Global impact of fuels | 14 | 4 | | Sporting chemistry | Performance fuel for people | 15 | 1 | | Sporting chemistry | Chemistry has the right fibre for sporting glory | 15 | 2 | | | Designer magic sponges | 15 | 3 | | | Catching the cheats: detecting drugs in sport | 15 | 4 | | Nanotechnology | Nanochemistry: delivering new medicines? | 16 | 1 | | Nanotechnology | Nanotechnologists inspired by nature: building new | 16 | 2 | | | model enzymes | 10 | | | | Liquid crystals: the fourth state of matter | 16 | 3 | | | When superconductors get crabby | 16 | 4 | | Chamietry and alimete | | 17 | 1 | | Chemistry and climate | Natural climate variability | 1/ | 1 | | | The Antarctic ozone hole | 17 | 2 | |------------------------------------------|---------------------------------------------------------|----|---| | | The benefits of bracing sea air | | 3 | | | The chemistry of indoor air | 17 | 4 | | Medicinal chemistry | Precious medicines | 18 | 1 | | 1/10/01/01/01/01/01/01/01/01/01/01/01/01 | Don't hold your breath: the diagnostic potential of | 18 | 2 | | | breath analysis | | | | | Curing cancer with chemistry | 18 | 3 | | | Salbutamol: saving your breath | 18 | 4 | | Design for the future | The polymer predicament: making plastics from | 19 | 1 | | · · | plants | | | | | Biocatalysis | 19 | 2 | | | Lab on a chip | 19 | 3 | | | LEDs: light fantastic | 19 | 4 | | Out of thin air | From volcanoes to sea salt: atmospheric sulfur | 20 | 1 | | | Atmospheric nitrogen | 20 | 2 | | | Poison in the air: atmospheric carbon monoxide | 20 | 3 | | | Do ants destroy the ozone layer? | 20 | 4 | | What's your poison? | Cuppa chemistry | 21 | 1 | | | Chemistry of wine | 21 | 2 | | | Biochemistry, brewing and beery scientists | 21 | 3 | | | A mug of coffee and chemistry | 21 | 4 | | Lifestyle chemistry | Chemistry's calling: mobile phones and touchscreen | 22 | 1 | | | technology | | | | | Curried chemistry | 22 | 2 | | | Two in one: the chemistry of shampoo and | 22 | 3 | | | conditioner | | | | | Shades of chemistry | 22 | 4 | | Greener and cleaner | Artificial photosynthesis: putting sunshine in the tank | 23 | 1 | | | Reclaiming plastic waste | 23 | 2 | | | What can we make from carbon dioxide? | 23 | 3 | | | Biocatalysis in biosolvents | 23 | 4 | | Chemistry in medicine | Developing and delivering drugs | 24 | 1 | | | Mind-numbing drugs | 24 | 2 | | | Fighting mental illness | 24 | 3 | | | Viral chemistry | 24 | 4 | | 25 years of | Gel chemistry: From jellies to 3D printing | 25 | 1 | | | Retrosynthesis | 25 | 2 | | | Carbene chemistry | 25 | 3 | | | FT-NMR | 25 | 4 | | Energy and efficiency | The chemistry of LEDs | 26 | 1 | | | Shining a light on solar energy | 26 | 2 | | | Batteries required: Advances in energy storage | 26 | 3 | | | Fuel from sunshine | 26 | 4 | | Wonder bugs | Landmine-detecting bacteria | 27 | 1 | | | Plastic-eating bacteria | 27 | 2 | | | Microbial medicine factories | 27 | 3 | | | New fuels from nature | 27 | 4 | | Animal chemistry | Bees, honey and venom | 28 | 1 | | | Frogs and toads | 28 | 2 | | | Cats and dogs | 28 | 3 | | | Spiders | 28 | 4 | |--------------------|---------------------------------|----|---| | A brief history of | Atomic structure: Part 1 | 29 | 1 | | | Atomic structure: Part 2 | 29 | 2 | | | The chemistry of nuclear energy | 29 | 4 |